Skip to main content

UNICAST, MULTICAST, BROADCAST

When traffic is passed between hosts on a network, three different transmission mechanisms are possible. These include unicasts, multicasts, and broadcasts.

Unicasts

A unicast is the most simple network transmission. As the name suggests, it is a direct transmission from one system to one other system only. As such, the destination address will always uniquely identify a single host for whom the data is meant. In a shared Ethernet environment (where a system might be exposed to all frames), systems would check to see whether the destination MAC address matched their own. If it did, it would process the frame. If not, it would discard the frame. On an IP-based network, the address 192.168.1.24 represents a unicast address.

Multicasts

Unlike unicasts, which are meant for a single host, a multicast is meant for a group of systems. Think of multicasts as a one-to-many transmission method. Multicasts are generally used when traffic such as video needs to be passed to many hosts at the same time. In this way, a sender would transmit a single stream of data, which would in turn be picked up by many different hosts. On IP networks, a special group of addresses is reserved for multicasting, those in the Class D range. When multiple hosts need to receive a multicast, they are all configured with an identical multicast IP address. When they receive traffic destined for this shared address, they process it. Do not confuse a multicast address with a regular IP address. In this example, all systems still have a unique IP address, but also “listen in” on a configured multicast address.

Broadcasts

The final type of network transmission is a broadcast. Quite simply, a broadcast is a transmission destined for all hosts. A special destination address designates a broadcast – in Ethernet, the broadcast address is FF-FF-FF-FF-FF-FF. When a host sees frames with this destination MAC address, it knows it has to process the frames. While excessive broadcasts on a network are generally undesirable, many network services depend on this type of transmission.

Comments

Popular posts from this blog

Sexy C#

Download samples   Table of Contents   1.   Introduction  2.   Background    3.   Sexy Features 3.1.   Extension Methods   3.2.   Anonymous Type   3.3.   Delegate   3.4.   Lambda Expression 3.5.   Async-Await Pair   3.6.   Generics   4.   Conclusion   1. Introduction     C#  is a very popular programming language. It is mostly popular in the .NET arena. The main reason behind that is the C# language contains so many useful features. It is actually a multi-paradigm programming language. Q.   Why do we call C# a muti-paradigm programming language? A.  Well, C# has the following characteristics:  Strongly typed   Object Oriented  Functional  Declarative Programming  Imperative Programming   Component based Programming Dynamic Programming ...

What Why How SDN..???????

What is SDN?   If you follow any number of news feeds or vendor accounts on Twitter, you've no doubt noticed the term "software-defined networking" or SDN popping up more and more lately. Depending on whom you believe, SDN is either the most important industry revolution since Ethernet or merely the latest marketing buzzword (the truth, of course, probably falls somewhere in between). Few people from either camp, however, take the time to explain what SDN actually means. This is chiefly because the term is so new and different parties have been stretching it to encompass varying definitions which serve their own agendas. The phrase "software-defined networking" only became popular over roughly the past eighteen months or so. So what the hell is it? Before we can appreciate the concept of SDN, we must first examine how current networks function. Each of the many processes of a router or switch can be assigned to one of three conceptual planes of operatio...

OpenDayLight Project --- SDN

OpenDaylight is a community-led, open, industry-supported framework, for accelerating adoption, fostering new innovation, reducing risk and creating a more transparent approach to Software-Defined Networking. OpenDaylight is a Collaborative Project at The Linux Foundation. It is structured using open source development best practices, and is comprised of the leading organizations in the technology industry. For more Information on OpenDayLight project, Please visit http://www.opendaylight.org/ for complete tutorial on OpenDayLight project, http://networkstatic.net/opendaylight-openflow-tutorial/